Linux之线程控制

news/2024/5/17 6:36:54

目录

一、POSIX线程库

二、线程的创建

三、线程等待

四、线程终止

五、分离线程

六、线程ID:pthread_t

1、获取线程ID

2、pthread_t

七、线程局部存储:__thread


一、POSIX线程库

由于Linux下的线程并没有独立特有的结构,所以Linux并没有提供线程相关的接口。

而我们所说的,pthread线程库是应用层的原生线程库。这个线程库并不是系统接口直接提供的,而是由第三方帮我们提供的。

1、与线程有关的函数构成了一个完整的系列,绝大多数函数的名字都是以“pthread_”打头的
2、要使用这些函数库,要通过引入头文<pthread.h>
3、链接这些线程函数库时要使用编译器命令的“-lpthread”选项

二、线程的创建

pthread_create:其功能就是创建线程。

NAMEpthread_create - create a new threadSYNOPSIS#include <pthread.h>int pthread_create(pthread_t *thread, const pthread_attr_t *attr,void *(*start_routine) (void *), void *arg);Compile and link with -pthread.

参数说明:

thread:获取创建成功的线程ID,该参数是一个输出型参数。

attr:用于设置创建线程的属性,传入nullptr表示使用默认属性。(我们一般不关心,直接设为nullptr)

start_routine:该参数是一个函数指针,表示线程启动后要执行的函数。

arg:传给线程执行函数的参数。

返回值:线程创建成功返回0,失败返回错误码。返回值也可以自己设置,返回给主线程。主线程通过pthread_join获取。

主线程:当一个程序启动时,就有一个进程被操作系统创建,与此同时一个线程也立刻运行,这个线程就叫做主线程。

下面我们让主线程调用pthread_create函数创建一个新线程:

#include <iostream>
#include <unistd.h>
#include <pthread.h>using namespace std;void *thread_run(void *argc)
{cout << "new thread pid: " << getpid() << "\n"<< endl;sleep(20);return nullptr;
}int main()
{pthread_t tid;pthread_create(&tid, nullptr, thread_run, (void *)"thread 1");while (true){cout << "main thread pid: " << getpid() << endl;sleep(1);}return 0;
}

 

使用ps -aL命令,可以显示当前的轻量级进程。

从上图,我们看到两个线程的PID相同,说明他们属于同一个进程。但是他们的LWP值不同,说明他们是两个不同的线程。LWP就是轻量级进程的ID。

注:在Linux中,线程与内核的LWP是一一对应的,实际上操作系统调度的时候是根据LWP调度的,而不是PID,只不过我们之前接触到的都是单线程进程,其PID和LWP是相等的,所以对于单线程进程来说,调度时采用PID和LWP是一样的。

我们也可以让一个主线程创建多个新线程

#include <iostream>
#include <unistd.h>
#include <string>
#include <pthread.h>using namespace std;void *thread_run(void *argc)
{string name = (char *)argc;while (true){cout << name << "---"<< "pid: " << getpid() << "\n"<< endl;sleep(1);}
}int main()
{pthread_t tid[5];char name[64];for (int i = 0; i < 5; i++){snprintf(name, sizeof(name), "%s-%d", "thread", i);pthread_create(tid + i, nullptr, thread_run, (void *)name);sleep(1);}while (true){cout << "main thread pid: " << getpid() << endl;sleep(3);}return 0;
}

因为主线程和五个新线程都属于同一个进程,所以它们的PID都是一样的。 

三、线程等待

一个线程被创建出来,那么这个线程就如同进程一般,也是需要被等待的。如果主线程不对新线程进行等待,那么这个新线程的资源也是不会被回收的。如果不等待会产生类似于“僵尸进程”的问题,也就会造成内存泄漏。所以线程需要被等待。

pthread_join:其功能就是进行线程等待

NAMEpthread_join - join with a terminated threadSYNOPSIS#include <pthread.h>int pthread_join(pthread_t thread, void **retval);Compile and link with -pthread.

参数说明:

thread:被等待线程的ID。
retval:线程退出时的退出码信息。

返回值:线程等待成功返回0,失败返回错误码。

#include <iostream>
#include <unistd.h>
#include <string>
#include <pthread.h>using namespace std;void *thread_run(void *argc)
{int count = 10;while (true){sleep(1);if (count++ == 10)break;}cout << "new thread  done ... quit" << endl;return nullptr;
}int main()
{pthread_t tid;pthread_create(&tid, nullptr, thread_run, (void *)"thread1");pthread_join(tid, nullptr);cout << "main thread wait done ... quit" << endl;return 0;
}

第二个参数是用来获取新线程返回值的。主线程可以通过新线程的返回值拿到新线程的计算结果(该结果也可以保存在堆空间上)

include <iostream>
#include <unistd.h>
#include <string>
#include <pthread.h>using namespace std;void *thread_run(void *argc)
{int count = 10;while (true){sleep(1);if (count++ == 10)break;}cout << "new thread  done ... quit" << endl;return (void *)10;
}int main()
{pthread_t tid;pthread_create(&tid, nullptr, thread_run, (void *)"thread1");void *ret = nullptr;pthread_join(tid, &ret);cout << "main thread wait done ... quit"<< " " << (long long)ret << endl;return 0;
}

四、线程终止

return:最简单的终止线程的方式,就是使用return返回一个返回值来终止线程。

pthread_exit:其功能就是终止一个线程。(终止线程不能使用exit,因为它是用来终止进程的)

参数,retval:设置退出结果。

NAMEpthread_exit - terminate calling threadSYNOPSIS#include <pthread.h>void pthread_exit(void *retval);Compile and link with -pthread.
#include <iostream>
#include <unistd.h>
#include <string>
#include <pthread.h>using namespace std;void *thread_run(void *argc)
{int count = 10;while (true){sleep(1);if (count++ == 10)break;}cout << "new thread  done ... quit" << endl;pthread_exit((void*)17);
}int main()
{pthread_t tid;pthread_create(&tid, nullptr, thread_run, (void *)"thread1");void *ret = nullptr;pthread_join(tid, &ret);cout << "main thread wait done ... quit"<< " " << (long long)ret << endl;return 0;
}

 

pthread_cancel:其功能是取消一个线程。

参数,thread:线程ID。

NAMEpthread_cancel - send a cancellation request to a threadSYNOPSIS#include <pthread.h>int pthread_cancel(pthread_t thread);Compile and link with -pthread.
#include <iostream>
#include <unistd.h>
#include <string>
#include <pthread.h>using namespace std;void *thread_run(void *argc)
{string name = (char *)argc;int count = 10;while (true){sleep(1);if (count++ == 10)break;}cout << "new thread  done ... quit" << endl;
}int main()
{pthread_t tid;pthread_create(&tid, nullptr, thread_run, (void *)"thread1");void *ret = nullptr;pthread_cancel(tid);pthread_join(tid, &ret);cout << "main thread wait done ... quit"<< " " << (long long)ret << endl;return 0;
}

 

线程被取消,线程等待时获取的退出码为-1。 

五、分离线程

新线程退出后,主线程需要对其进行pthread_join操作,否则无法释放资源,从而造成内存泄漏。
但如果主线程不关心新线程的返回值,此时我们可以将该新线程进行分离,后续当新线程退出时就会自动释放线程资源。

一个线程如果被分离了,这个线程依旧要使用该进程的资源,依旧在该进程内运行,甚至这个线程崩溃了一定会影响其他线程,只不过这个线程退出时不再需要主线程去join了,当这个线程退出时系统会自动回收该线程所对应的资源。

pthread_detach:其功能就是进行分离线程。一般是线程自己分离。

int pthread_detach(pthread_t thread);

参数说明:thread:被分离线程的ID。

返回值说明:

线程分离成功返回0,失败返回错误码。

#include <iostream>
#include <unistd.h>
#include <string>
#include <pthread.h>using namespace std;void *thread_run(void *argc)
{pthread_detach(pthread_self());int count = 10;while (true){sleep(1);if (count++ == 10)break;}cout << "new thread  done ... quit" << endl;pthread_exit((void*)17);
}int main()
{pthread_t tid;pthread_create(&tid, nullptr, thread_run, (void *)"thread1");void *ret = nullptr;cout << "main thread wait done ... quit"<< " " << (long long)ret << endl;return 0;
}

 如果我们在线程分离了之后,任然等待,会怎么样呢?

#include <iostream>
#include <unistd.h>
#include <cerrno>
#include <cstring>
#include <pthread.h>using namespace std;void *thread_run(void *argc)
{pthread_detach(pthread_self());int count = 9;while (true){sleep(1);if (count++ == 10)break;}cout << "new thread  done ... quit" << endl;pthread_exit((void *)17);
}int main()
{pthread_t tid;pthread_create(&tid, nullptr, thread_run, (void *)"thread1");sleep(2);int n = pthread_join(tid, nullptr);cout << "n: " << n << "errstring: " << strerror(n) << endl;return 0;
}

六、线程ID:pthread_t

pthread_create函数会产生一个线程ID,存放在第一个参数指向的地址中,该线程ID和内核中的LWP是完全不一样的。内核中的LWP属于进程调度的范畴,需要一个数值来唯一表示该线程。

那么pthread_t到底是什么类型呢?

1、获取线程ID

pthread_self:获取线程的ID。

#include <iostream>
#include <unistd.h>
#include <cerrno>
#include <cstring>
#include <pthread.h>using namespace std;void *thread_run(void *argc)
{int count = 9;while (true){sleep(1);if (count++ == 10)break;}cout << "new thread  done ... quit"<< "new thread ID: " << pthread_self() << endl;pthread_exit((void *)17);
}int main()
{pthread_t tid;pthread_create(&tid, nullptr, thread_run, (void *)"thread1");void *ret = nullptr;sleep(2);cout << "main thread ID: " << pthread_self() << endl;pthread_join(tid, &ret);return 0;
}

为什么线程的ID数值这么大呢?下面我们就来讲一讲。 

2、pthread_t

进程运行时线程动态库被加载到内存,然后通过页表映射到进程地址空间中的共享区,此时该进程内的所有线程都是能看到这个动态库的。

其中主线程采用的栈是进程地址空间中原生的栈,而其余线程采用的栈就是由线程库帮我们在共享区中开辟的。

线程库给每个新线程提供属于自己的struct pthread,当中包含了对应线程的各种属性;每个线程还有自己的线程局部存储,当中包含了对应线程被切换时的上下文数据。其中,还有线程栈。如下图:

所以,线程ID本质就是进程地址空间共享区上对应的struct pthread的虚拟地址。 

七、线程局部存储:__thread

假设有一个全局变量:g_val。我们知道,各个线程是共享全局变量的。不同的线程可以对同一个全局变量进行操作。那么如果我们想让每个线程都拥有属于自己的g_val,那么我们可以加上关键字:__thread。这种现象就叫做线程局部存储。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.cpky.cn/p/10356.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈,一经查实,立即删除!

相关文章

2.模拟问题——7.九宫格键盘输入时间

输入 bob www 输出 7 7 【提交地址】 题目分析 九宫格键盘如图所示&#xff1a; 注意&#xff0c;题目中有两个对应关系需要注意&#xff1a; 第一&#xff0c;字母与按键次数的对应第二&#xff0c;字母与按键的对应&#xff0c;如果连续两次是不同的按键则不需要等待&…

MySQL-----存储过程

▶ 介绍 存储过程是事先经过编译并存储在数据库中的一段SQL语句的集合&#xff0c;调用存储过程可以简化应用开发人员的很多工作&#xff0c;减少数据在数据库和应用服务器之间的传输&#xff0c;对于提高数据处理的效率是有好处的。 存储过程思想上很简单&#xff0c;…

linux系统adb调试工具

adb的全称为Android Debug Bridge&#xff0c;就是起到调试桥的作用。通过adb可以在Eclipse中通过DDMS来调试Android程序&#xff0c;说白了就是调试工具。 adb的工作方式比较特殊&#xff0c;采用监听Socket TCP 5554等端口的方式让IDE和Qemu通讯&#xff0c;默认情况下adb会…

分布式执行引擎ray入门--(2)Ray Data

目录 一、overview 基础代码 核心API&#xff1a; 二、核心概念 2.1 加载数据 从S3上读 从本地读&#xff1a; 其他读取方式 读取分布式数据&#xff08;spark&#xff09; 从ML libraries 库中读取&#xff08;不支持并行读取&#xff09; 从sql中读取 2.2 变换数据…

ELFK 分布式日志收集系统

ELFK的组成&#xff1a; Elasticsearch: 它是一个分布式的搜索和分析引擎&#xff0c;它可以用来存储和索引大量的日志数据&#xff0c;并提供强大的搜索和分析功能。 &#xff08;java语言开发&#xff0c;&#xff09;logstash: 是一个用于日志收集&#xff0c;处理和传输的…

光致发光谱荧光量子效率测量系统

荧光量子积分球是一个专门用于测量荧光量子效率的设备。荧光量子效率是指物质吸收光后所发射的荧光光子数与所吸收的激发光光子数之间的比值。这种设备通过比较待测荧光物质和已知荧光量子产率的参比物质&#xff0c;在相同激发条件下所测得的积分荧光强度&#xff08;即校正的…