【C++航海王:追寻罗杰的编程之路】priority_queue(优先队列) | 容器适配器你知道哪些?

news/2024/5/2 18:17:45

目录

1 -> priority_queue的介绍和使用

1.1 -> priority_queue的介绍

1.2 -> priority_queue的使用

1.3 -> priority_queue的模拟实现

2 -> 容器适配器

2.1 -> 什么是适配器

2.2 -> STL标准库中stack和queue的底层结构

2.3 -> deque的介绍

2.3.1 -> deque的原理介绍

2.3.2 -> deque的缺陷

2.4 -> 为什么选择deque作为stack和queue的底层默认容器

2.5 -> STL标准库中对于stack和queue的模拟实现

2.5.1 -> stack的模拟实现

2.5.2 -> queue的模拟实现


1 -> priority_queue的介绍和使用

1.1 -> priority_queue的介绍

priority_queue的文档介绍

1. 优先队列是一种容器适配器,根据严格的弱排序标准,它的第一个元素是它所包含的元素中最大的。

2. 类似于堆,在堆中可以随时插入元素,并且只能检索最大堆元素(优先队列中位于顶部的元素)。

3. 优先队列被实现为容器适配器,容器适配器即将特定容器类封装作为其底层容器类,queue提供一组特定的成员函数来访问其元素。元素从特定容器的“尾部”弹出,其称为优先队列的顶部。

4. 底层容器可以是任何标准容器类模板,也可以是其他特定设计的容器类。容器应该可以通过随机访问迭代器访问,并支持以下操作:

  • empty(): 检测容器是否为空
  • size(): 返回容器中有效元素个数
  • front(): 返回容器中第一个元素的引用
  • push_back(): 在容器尾部插入元素
  • pop_back(): 删除容器尾部元素

5. 标准容器类vector和的deque满足这些需求。默认情况下,如果没有特定的priority_queue类实例化指定容器列,则使用vector。

6. 需要支持随机访问迭代器,以便始终在内部保持堆结构。容器适配器通过在需要时自动调用算法函数make_heap、push_heap和pop_heap来自动完成此操作。

1.2 -> priority_queue的使用

优先队列默认使用vector作为其底层存储数据的容器,在vector上又使用了堆算法将vector中元素构造成堆的结构,因此priority_queue就是堆,所有需要用到堆的位置,都可以考虑使用priority_queue。注意:默认情况下priority_queue是大堆。

函数声明接口说明
priority_queue()/priority_queue(first, last)构造一个空的优先队列
empty()检测优先队列是否为空,是返回true,否则返回false
top()返回优先队列中最大(或最小元素),即堆顶元素
push(x)在优先队列中插入元素x
pop()删除优先队列中最大(或最小)元素,即堆顶元素

【注意】

1. 默认情况下,priority_queue是大堆。

#define _CRT_SECURE_NO_WARNINGS 1#include <iostream>
#include <vector>
#include <queue>
#include <functional>
using namespace std;void TestPriorityQueue()
{vector<int> v{ 3,2,7,6,0,4,1,9,8,5 };priority_queue<int> q1;for (auto& e : v)q1.push(e);cout << q1.top() << endl;// 如果要创建小堆,将第三个模板参数换成greater比较方式priority_queue<int, vector<int>, greater<int>> q2(v.begin(), v.end());cout << q2.top() << endl;
}int main()
{TestPriorityQueue();return 0;
}

2. 如果在priority_queue中放自定义类型数据,用户需要在自定义类型中提供>或<的重载。

class Date
{
public:Date(int year = 1900, int month = 1, int day = 1): _year(year), _month(month), _day(day){}bool operator<(const Date& d)const{return (_year < d._year) ||(_year == d._year && _month < d._month) ||(_year == d._year && _month == d._month && _day < d._day);}bool operator>(const Date& d)const{return (_year > d._year) ||(_year == d._year && _month > d._month) ||(_year == d._year && _month == d._month && _day > d._day);}friend ostream& operator<<(ostream& _cout, const Date& d){_cout << d._year << "-" << d._month << "-" << d._day;return _cout;}private:int _year;int _month;int _day;
};void TestPriorityQueue()
{// 大堆,需要用户在自定义类型中提供<的重载priority_queue<Date> q1;q1.push(Date(2024, 10, 29));q1.push(Date(2024, 10, 28));q1.push(Date(2024, 10, 30));cout << q1.top() << endl;// 如果要创建小堆,需要用户提供>的重载priority_queue<Date, vector<Date>, greater<Date>> q2;q2.push(Date(2024, 10, 29));q2.push(Date(2024, 10, 28));q2.push(Date(2024, 10, 30));cout << q2.top() << endl;
}

1.3 -> priority_queue的模拟实现

#include <iostream>
#include <vector>
using namespace std;// priority_queue--->堆
namespace fyd
{template<class T>struct less{bool operator()(const T& left, const T& right)return left < right;};template<class T>struct greater{bool operator()(const T& left, const T& right)return left > right;};template<class T, class Container = std::vector<T>, class Compare = less<T>>class priority_queue{public:// 创造空的优先级队列priority_queue() : c() {}template<class Iterator>priority_queue(Iterator first, Iterator last): c(first, last){// 将c中的元素调整成堆的结构int count = c.size();int root = ((count - 2) >> 1);for (; root >= 0; root--)AdjustDown(root);}void push(const T& data){c.push_back(data);AdjustUP(c.size() - 1);}void pop(){if (empty())return;swap(c.front(), c.back());c.pop_back();AdjustDown(0);}size_t size()const{return c.size();}bool empty()const{return c.empty();}// 堆顶元素不允许修改,因为:堆顶元素修改可以会破坏堆的特性const T& top()const{return c.front();}private:// 向上调整void AdjustUP(int child){int parent = ((child - 1) >> 1);while (child){if (Compare()(c[parent], c[child])){swap(c[child], c[parent]);child = parent;parent = ((child - 1) >> 1);}elsereturn;}}// 向下调整void AdjustDown(int parent){size_t child = parent * 2 + 1;while (child < c.size()){// 找以parent为根的较大的孩子if (child + 1 < c.size() && Compare()(c[child], c[child + 1]))child += 1;// 检测双亲是否满足情况if (Compare()(c[parent], c[child])){swap(c[child], c[parent]);parent = child;child = parent * 2 + 1;}elsereturn;}}private:Container c;};
}

2 -> 容器适配器

2.1 -> 什么是适配器

适配器是一种设计模式(设计模式是一套被反复使用的、多数人知晓的、经过分类编目的、代码设计经验的总结),该种模式是将一个类的接口转换成客户希望的另外一个接口。

2.2 -> STL标准库中stack和queue的底层结构

虽然stack和queue中也可以存放元素,但在STL中并没有将其划分在容器的行列,而是将其称为容器适配器,这是因为stack和queue只是对其他容器的接口进行了包装,STL中stack和queue默认使用deque。

2.3 -> deque的介绍

2.3.1 -> deque的原理介绍

deque(双端队列):是一种双开口的”连续“空间的数据结构,双开口的含义是:可以在头尾两端进行插入和删除操作,且时间复杂度为O(1),与vector比较,头插效率高,不需要搬移元素;与list比较,空间利用率比较高。

deque并不是真正连续的空间,而是由一段段连续的小空间拼接而成的,实际deque类似于一个动态的二维数组,其底层结构如下: 

双端队列底层是一段假象的连续空间,实际是分段连续的,为了维护其”整体连续“以及随机访问的假象,落在了deque的迭代器身上,因此deque的迭代器设计就比较复杂,如下图:  

那deque是如何借助其迭代器维护其假象连续的结构呢? 

2.3.2 -> deque的缺陷

 与vector比较,deque的优势是:头部插入和删除时,不需要搬移元素,效率特别高,而且在扩容时,也不需要搬移大量的元素,因此其效率势必比vector高。

与list比较,其底层时连续空间,空间利用率比较高,不需要存储额外字段。

但是,deque有一个致命缺陷:不适合遍历,因为在遍历时,deque的迭代器要频繁的去检测其是否移动到某段小空间的边界,导致效率低下,而序列式场景中,可能需要经常遍历,因此在实际中,需要线性结构时,大多数情况下优先考虑vector和list,deque的应用并不多,而目前能看到的一个应用就是,STL用其作为stack和queue的底层数据结构。

2.4 -> 为什么选择deque作为stack和queue的底层默认容器

stack是一种后进先出的特殊线性数据结构,因此只要具有push_back()和pop_back()操作的线性结构,都可以作为stack的底层容器,比如vector和list都可以;queue是先进先出的特殊线性数据结构,只要具有push_back()和pop_front()操作的线性结构,都可以作为queue的底层容器,比如list。但是STL中对stack和queue默认选择deque作为其底层容器,主要是因为:

  1. stack和queue不需要遍历(因此stack和queue没有迭代器),只需要在固定的一端或两端进行操作。
  2. 在stack中元素增长时,deque比vector的效率高(扩容时不需要搬移大量数据);queue中的元素增长时,deque不仅效率高,而且内存使用率高。

结合了deque的优点,而完美避开了其缺陷。

2.5 -> STL标准库中对于stack和queue的模拟实现

2.5.1 -> stack的模拟实现

#include<deque>namespace fyd
{template<class T, class Con = deque<T>>//template<class T, class Con = vector<T>>//template<class T, class Con = list<T>>class stack{public:stack() {}void push(const T& x) { _c.push_back(x); }void pop() { _c.pop_back(); }T& top() { return _c.back(); }const T& top()const { return _c.back(); }size_t size()const { return _c.size(); }bool empty()const { return _c.empty(); }private:Con _c;};
}

2.5.2 -> queue的模拟实现

#include<deque>
#include <list>namespace fyd
{template<class T, class Con = deque<T>>//template<class T, class Con = list<T>>class queue{public:queue() {}void push(const T& x) { _c.push_back(x); }void pop() { _c.pop_front(); }T& back() { return _c.back(); }const T& back()const { return _c.back(); }T& front() { return _c.front(); }const T& front()const { return _c.front(); }size_t size()const { return _c.size(); }bool empty()const { return _c.empty(); }private:Con _c;};
}

感谢各位大佬支持!!!

互三啦!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.cpky.cn/p/11333.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈,一经查实,立即删除!

相关文章

深度学习算法概念介绍

前言 深度学习算法是一类基于人工神经网络的机器学习方法&#xff0c;其核心思想是通过多层次的非线性变换&#xff0c;从数据中学习表示层次特征&#xff0c;从而实现对复杂模式的建模和学习。深度学习算法在图像识别、语音识别、自然语言处理等领域取得了巨大的成功&#xf…

实现商铺和缓存与数据库双写一致

2.4 实现商铺和缓存与数据库双写一致 核心思路如下&#xff1a; 修改ShopController中的业务逻辑&#xff0c;满足下面的需求&#xff1a; 根据id查询店铺时&#xff0c;如果缓存未命中&#xff0c;则查询数据库&#xff0c;将数据库结果写入缓存&#xff0c;并设置超时时间…

Unity-C#进阶——3.27更新中

文章目录 数据结构类ArrayListStackQueueHashtable 泛型泛型类、泛型方法、泛型接口ListDictionaryLinkedList泛型栈&#xff0c;泛型队列 委托和事件委托事件匿名函数Lambad 表达式**闭包** List 排序逆变协变多线程进程线程多线程方法&#xff1a;线程之间共享数据&#xff1…

【jenkins+cmake+svn管理c++项目】jenkins回传文件到svn(windows)

书接上文&#xff1a;创建一个项目 在经过cmakemsbuild顺利生成动态库之后&#xff0c;考虑到我一个项目可能会生成多个动态库&#xff0c;它们分散在build内的不同文件夹&#xff0c;我希望能将它们收拢到一个文件夹下&#xff0c;并将其回传到svn。 一、动态库移位—cmake实…

vue系列——v-text

<!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>v-text指令</title> </head> <body&…

外包干了10天,技术倒退明显

先说情况&#xff0c;大专毕业&#xff0c;18年通过校招进入湖南某软件公司&#xff0c;干了接近6年的功能测试&#xff0c;今年年初&#xff0c;感觉自己不能够在这样下去了&#xff0c;长时间呆在一个舒适的环境会让一个人堕落!而我已经在一个企业干了四年的功能测试&#xf…