查询优化-提升子查询-UNION类型

news/2024/4/26 21:34:05

瀚高数据库
目录
文档用途
详细信息

文档用途

剖析UNION类型子查询提升的条件和过程

详细信息

注:图片较大,可在浏览器新标签页打开。

SQL:

SELECT * FROM score sc, LATERAL(SELECT * FROM student WHERE sno = 1 UNION ALL SELECT * FROM student WHERE sno = sc .sno) st WHERE st.sno > 0;

查询树结构:

分析该查询树,主查询包含2个RangeTblEntry:sc和st;其中st这个表的类型是子查询,包含2个RangeTblEntry,从SQL也可以看出这2个RangeTblEntry对应两个select查询,按照Query结构去分层该查询树为3层。

稍微简化一下,结构如下图所示:

在这里插入图片描述

打印该SQL的执行计划:

image.png

根据执行计划和查询树优化前后对比,对于UNION类型的子查询提升主要是将UNION两侧子查询提升,反映在查询树中即是这2个子查询类型的RangeTblEntry添加到主查询对应的rtable队列中,3层查询优化为2层查询结构。

提升流程:查找范围表中可以提升到父查询中的子查询。如果子查询没有特殊的特性,比如分组/聚合,那么我们可以将其合并到父查询的联接树中。此外,简单的 UNION ALL 结构的子查询可以转换为“追加关系”。

void pull_up_subqueries(PlannerInfo *root){Assert(IsA(root->parse->jointree, FromExpr));root->parse->jointree = (FromExpr *)pull_up_subqueries_recurse(root, (Node *) root->parse->jointree,NULL, NULL);Assert(IsA(root->parse->jointree, FromExpr));}

jointree中包含了FROM…WHERE…所引用的表,该递归结构通过pull_up_subqueries_recurse对其进行递归处理,所以优化执行时先去深度遍历FromExpr中的列表中的每一项成员:

if (IsA(jtnode, FromExpr)){FromExpr   *f = (FromExpr *) jtnode;ListCell   *l;Assert(containing_appendrel == NULL);foreach(l, f->fromlist){lfirst(l) = pull_up_subqueries_recurse(root, lfirst(l),lowest_outer_join,NULL);}}

如果RangeTblEntry是subquery类型并且满足简单子查询条件,使用pull_up_simple_union_all处理,该函数接受3个参数,分别是:查询树上下文, RangeTblRef, RangeTblEntry。

int varno = ((RangeTblRef *) jtnode)->rtindex;RangeTblEntry *rte = rt_fetch(varno, root->parse->rtable);if (rte->rtekind == RTE_SUBQUERY &&is_simple_union_all(rte->subquery))return pull_up_simple_union_all(root, jtnode, rte);

pull_up_simple_union_all:

根据优化后的查询树结构,提升的主要目的是把三个层次变成两个层次,那么如果“子子查询”中引用了顶层的列属性,那么这些变量应该提升一个层次,也就是调用incrementVarSublevelsUp_ rtable(rtable, -1 , 1 )。比如本例SQL:SELECT * FROM student WHERE sno = sc .sno , sc.sno 就引用了第一个层次中的列表量,它的 Var >varlevlesup 的原值是 2(相对值),子查询提升之后应该变成1。

image.png                                   image.png

在这里插入图片描述

2.下发LATERAL,本例中是(SELECT * FROM student WHERE sno = 1)和 ( SELECT * FROM student WERE sno = sc.sno )这两个子查询都变成 LATERAL,而不是只是针对引用父查询属性子查询才会拥有LATERAL语义。

image.png image.png         image.png

在这里插入图片描述
在这里插入图片描述

if (rte->lateral){ListCell   *rt;foreach(rt, rtable){RangeTblEntry *child_rte = (RangeTblEntry *) lfirst(rt);Assert(child_rte->rtekind == RTE_SUBQUERY);child_rte->lateral = true;}}

3.把第三层次的两个RangeTblEntry:(SELECT * FROM student WHERE sno = 1)和(SELECT * FROM student WHERE sno = sc.sno )两个子查询附加到第一层的 Query->rtable 列表中,在这第3步过后,后续的子查询的rtindex都将加上父查询rtindex作为偏置值。

/** Append child RTEs (and their perminfos) to parent rtable.*/CombineRangeTables(&root->parse->rtable, &root->parse->rteperminfos,rtable, subquery->rteperminfos);{*dst_rtable = list_concat(*dst_rtable, src_rtable);...}

4.开始对 subquery->setOperations 进行遍历 (pull_up_union_leaf_queries 函数),为其中的每个子查询生成一个AppendRelInfo 节点,在本例中为( SELECT * FROM student WHERE sno = 1〕和 (SELECT * FROM student WHERE sno = sc.sno )生成两个 AppendRelInfo 节点,这种类型的节点是记录到查询树的上下文中,在查询树中看不到。

SetOperationStmt *op = (SetOperationStmt *) setOp;/* Recurse to reach leaf queries */pull_up_union_leaf_queries(op->larg, root, parentRTindex, setOpQuery,childRToffset);pull_up_union_leaf_queries(op->rarg, root, parentRTindex, setOpQuery,childRToffset);appinfo = makeNode(AppendRelInfo);appinfo->parent_relid = parentRTindex;appinfo->child_relid = childRTindex;appinfo->parent_reltype = InvalidOid;appinfo->child_reltype = InvalidOid;make_setop_translation_list(setOpQuery, childRTindex, appinfo);appinfo->parent_reloid = InvalidOid;root->append_rel_list = lappend(root->append_rel_list, appinfo);
  1. 简单回顾这种类型子查询流程如下图:

image.png

到此为止,还有一个需要解决的问题:子查询提升将对应的RangeTblEntry添加到了父查询的rtable中,而且过程中更新了rtindex(第4步),这个新的RangeTblEntry不会在父查询的FromExpr中出现,所以构造完ApendRelInfo后,需要对子查询构造新的RangeTblRef,填充新的rtindex, 然后执行pull_up_subqueries_recurse。

rtr = makeNode(RangeTblRef);rtr->rtindex = childRTindex;(void) pull_up_subqueries_recurse(root, (Node *) rtr,NULL, appinfo);

最后就能得到优化后的查询树结构。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.cpky.cn/p/11242.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈,一经查实,立即删除!

相关文章

基于Weibull、Beta、Normal分布的风、光、负荷场景生成及K-means场景削减方法

目录 一、主要内容: 二、代码运行效果: 三、Weibull分布与风机风速: 四、Beta分布与光伏辐照度: 五、Normal分布与电负荷: 六、K-means聚类算法: 七、完整代码数据下载: 一、主要内容&am…

idea创建javaweb项目步骤超详细(2022最新版本)

目录 前言必读 一、新建文件 1.在idea里面点击文件-新建-项目 2.新建项目-更改名称为自己想要的项目名称-创建 3.右键自己建立的项目-添加框架支持(英文版是Add Framework Support...) 4.勾选Web应用程序-确定 5.建立成功界面 二、配置tomcat 6.…

社交媒体之王:探索Facebook的全球影响力

在当今数字化时代,Facebook作为社交媒体领域的巨头,其影响力无可置疑。本文将深入探讨Facebook在全球范围内的影响力,以及它对用户、社会和文化的深远影响。 1. 社交媒体巨头的地位 Facebook不仅是全球最大的社交媒体平台,还是社…

JDK,JRE,JVM之间的关系

他们明面上的关系是JDK包含JRE,JRE包含JVM。 简单理解JDK就是Java开发工具包。JRE是Java运行环境。JVM是Java虚拟机。 JDK是面向开发者的,JRE是面向JAVA程序的用户的。也就是说开发者开发JAVA程序是需要用到JDK,如果用户不去开发JAVA程序&am…

面试准备-基础【面试】

面试准备-基础【面试】 数据结构二叉树完全二叉树满二叉树BST 二叉排序树|二叉搜索树AVL 平衡二叉树B树 多路平衡查找树B树红黑树哈夫曼树散列 操作系统面试题并行和并发什么是进程?进程和程序的区别?进程的基本状态什么是线程?线程和进程的区…

QT中的 容器(container)简介

Qt库提供了一套通用的基于模板的容器类&#xff0c;可以用这些类存储指定类型的项。比如&#xff0c;你需要一个大小可变的QString的数组&#xff0c;则使用QVector<QString>。 这些容器类比STL&#xff08;C标准模板库&#xff09;容器设计得更轻量、更安全并且更易于使…